京杭运河畔崛起"智慧港",重塑了港口工人的技能图谱。

轻点按钮,万吨货物已通江达海

本报记者 田国垒 本报通讯员 马辉

绿意葱茏的京杭大运河龙拱河畔,巨型 岸桥如钢铁巨人般屹立,自动化场桥吊具灵 巧地上下舞动,无人集装箱卡车在码头、堆 场、铁路作业区有序穿梭。繁忙景象中,却鲜 见人影,数百米外的龙拱港远程控制中心,岸 桥司机张涛正全神贯注,通过屏幕和手柄,精 准操控着设备,抓箱、起吊、落位,一系列动作 行云流水。"游戏"之间,万吨货物已通江达海。

这里是全流程无人化及无人运输常态化 的内河集装箱港口——济宁港航龙拱港。从 传统散货码头到智慧化集装箱枢纽的华丽转 身,改变的不仅是港口的面貌,更重塑了新一 代港口工人的技能图谱与职业荣光。

从"一眼望到头"到"一屏掌乾坤"

"以前每天就是用传统吊车装货、卸货, 日复一日,来来回回,日子一眼望到头。"张 涛,这位在传统港口干了近十年的"老司机", 曾以为职业生涯已无波澜。三年前的龙拱 港,还是一个装卸煤炭、砂石等散货的小码 头。2021年6月,龙拱港启动集装箱泊位建 设,将海港的自动化、绿色化理念引入千年运 河,自动化岸桥、全自动场桥、无人集卡等崭 新的智能装备陆续就位。面对转型,张涛没 有犹豫,从零开始攀登技术新峰。

张涛赴青岛、日照等先进海港,学习数字 化机械操作。汗水浸透工装,换来了惊人的 蜕变。他和班组成员练就了1人同时操控4 台场桥的硬核本领,2分钟内完成一次收发 箱作业,人工干预准确率100%,作业效率较 初期飙升80%。

与张涛经历相似却更显传奇的,是一支 由23名转岗煤矿女工组成的"智控班"。班

智慧化的跃升让古老运河澎湃新动能,也为奋斗者们搭建起实现价值的广阔舞台。 龙拱港的工人们用汗水与智慧,共同书写着内河港口智能升级的时代答卷。他们不再是 传统意义上的"码头工人",而是驾驭智能装备的科技工匠、保障系统运行的技术尖兵、推 动效率革命的创新先锋。

长宋文庆动情地说:"从煤矿后勤到港口前 沿,我们的人生轨迹被智慧港口彻底改变。" 她们曾是安居煤矿的洗衣工、面点师。当煤 矿关停、港口建设急需人才时,她们毅然报 名,成为国内第一批内河港口岸桥女司机的 "种子选手"。在青岛港特训期间,盛夏的金 属扶手烫得需裹湿布才能触碰,恐高的成员 站在几十米高的平台上双腿发抖,却硬是咬 着牙完成每日攀爬。她们将操作界面截图打 印成册,把设备按钮编成"和面、醒发、蒸制" 的口诀,白天苦练实操,夜晚复盘录像。笔记 本里密密麻麻的记录,是她们蜕变的见证。

学成归来,挑战才真正开始。面对龙拱 港尚未组装调试、自动化程度更高的新设备, 她们蹲守在堆场,在50摄氏度高温的地面上 反复调试。通过动态记录参数、优化操作流 程,她们在岸桥作业中实现了"人机协作、空 间互补"。这支"娘子军"先后荣获济宁市巾 帼文明岗、青年文明号等荣誉,班长宋文庆更 在"建设世界一流港口"全国班组长竞赛中斩

技术团队筑牢智慧基石

智慧港口的流畅运转,离不开幕后技术 团队的坚实保障,技术创新与人才培育是龙 拱港保持领先的双引擎。

盛夏8月,酷暑对无人设备是严峻"烤 验。流动机械班组化身"神经中枢守护者", 超前开展"拉网式"排查,对无人集卡等关键 设备的液压系统、散热装置、供电线路进行精 密"体检"。他们运用红外测温仪,如同进行 "血管造影",精准定位压力隐患。技术员们 更是巧思妙想,通过调整液压系统主通风电 机转速方向,实现了设备"降温、降耗、提效"三 重突破,确保无人车队在热浪中"元气满满"。

面对自动化系统运行中的复杂难题,龙 拱港各部门联合,邀请顶尖技术团队入港"会 诊"。通过"跟班写实"、深入交流、专题研讨, 精准定位瓶颈,合力攻关优化。

龙拱港持续组织无人集卡操作专项培 训,新入职大学生与生产骨干同堂学习。理 论筑基讲解自动驾驶、环境感知等核心原理; 实操强技在模拟场景中演练全流程操作与应 急处理。这种"理论+实操"的沉浸式培训, 既提升了现有人才技能,也为港口注入了理 解前沿科技的"新鲜血液"。

王科栋,这位从煤矿信息化"尖兵"转型 的科技主管,是技术攻坚的缩影。转战港口 初期,面对"网络如何布局""系统如何联调" 等全新挑战,他多次赴青岛港、日照港取经。 在龙拱港建设关键期,他带领团队日夜奋战, 完成数据中心建设、设备调试、系统协同等数 十项工程。为实现无人运输常态化,他历时 3个月攻坚,创新采用"5G多频段组网"方案, 解决了无人集卡车队大上行通信和低延时控 制的网络难题,为全国内河首个无人集卡编 队常态化运行铺平了道路。他主导的《"5G 导航+高精地图"无人水平运输应用》项目, 一举斩获交通行业创新成果一等奖。

复合型人才开拓新蓝海

在龙拱港,转型的故事远不止于操控室 与技术中心。马国辉的经历,诠释了新时代 产业工人"干一行、爱一行、精一行"的无限

他曾是一名消防队员,是烈火中逆行的 "尖刀班长"。龙拱港筹建初期,他又毅然跨 界,48天攻克全英文界面的正面吊操作,从 "机械小白"跃升为"效率冠军"。面对陌生设 备,他自制"图解词典",手绘按键功能,为练 就毫米级精准对位,在烈日下一站数小时。 他总结的"二次停钩一确认"工作法,使装卸 事故率骤降90%,创下单班装卸136标箱的 集团纪录,效率翻倍。如今他在攻读机电一 体化专业。"技术迭代快,不学习连设备都'听 不懂'。"他的话语朴素而深刻。

马国辉的经历,是龙拱港人才生态的生 动注脚。他积极投身"师带徒",培养出十几 名优秀的正面吊操作手和9名复合型骨干。 徒弟孔凯感叹:"师傅总说,工匠精神就是永 远把'更好'当作起点。"2025年,马国辉荣获 济宁市"能源工匠"称号。

从张涛的精益求精,到智控班女工的破 茧成蝶,从王科栋的技术攻坚,到马国辉的跨 界传奇,龙拱港的工人们用汗水与智慧,共同 书写着内河港口智能升级的时代答卷。他们 不再是传统意义上的"码头工人",而是驾驭 智能装备的科技工匠、保障系统运行的技术 尖兵、推动效率革命的创新先锋。智慧化的 跃升让古老运河澎湃新动能,也为奋斗者们 搭建起实现价值的广阔舞台。当远程操控的 岸桥轻舒巨臂,当无人集卡在码头自由穿梭, 一幅"无人"大港的画卷已徐徐展开。

北京科学中心主展馆焕新开放

展现科学、技术、社会与生存环境的关系

本报讯 (记者黄哲雯)在2025年全国科普月活动举办之 际,北京科学中心主展馆四层展厅于近日焕新开放。改造后 的展厅主题为"求索——科学、技术、社会与生存环境",展示 面积约1450平方米,重点展现科学、技术、社会与生存环境的 关系,分为"科学认知""技术创新"和"社会协作"三个展区。

科学认知展区以科学观念如何解释自然现象和解决实际 问题为核心。科学是认识世界的一种方法,通过科学认知这 个世界逐步形成科学观念,科学观念在解释自然现象和解决 实际问题都有着重要的意义。该展厅包括科技文明、时间螺 旋、龙卷风、破冰利刃、形抗干钧、聚变反应等24件互动展项。

技术创新展区以人类从赖以生存的地球家园走向星际为 主线,展现技术创新是在科学探究和技术工程实践中产生 的。同时在这个过程中,不仅要培养青少年科学思维,学会 像科学家一样去思考,还要培养青少年的探究实践能力,像工 程师一样去设计。该展厅包括长征十号、月球试验场、火星科 研站、另一个地球等4大展项群。

社会协作展区由墙面和地面的展项构成,包括奔向目 标、星际迷航等5件互动展项。

据悉,为帮助青少年更好地理解展项内容,展厅中还特别 设置了两个教育专区,围绕科学观念、科学思维、探究实践和 态度责任四个维度,以展项为教具和学具,研发了16门科学 教育活动,主题涉及地球科学、天文学、技术与工程等方面。

为复杂环境下空气过滤提供解决方案

环保多功能型材料研究取得进展

本报讯 (记者于忠宁)随着煤化工、油气加工及半导体 制造等重要产业升级,为保障生产环节顺利运行与环境可持 续发展,对空气过滤技术与材料的需求不断提高。传统纤维 素纸基滤材在复杂环境下面临机械强度和稳定性不足等挑 战。近日,记者从中国科学院获悉,该院新疆理化技术研究所 在环保多功能型空气过滤材料研发方面取得进展。

该团队以莱赛尔纤维和玄武岩纤维为原料,采用湿法成型 工艺制备了微纳米复合纤维滤材。该滤材具有良好的柔性与 可加工性,与纯纤维素纤维滤材相比,通过与玄武岩纤维复合。 其破裂强度和撕裂强度均有显著提升。科研人员进一步通过 在复合滤材表面原位生长沸石咪唑酯骨架(ZIF-8),赋予其优 异的空气净化和抗菌性能,滤材对 PM0.3 的过滤效率达到 97.72%。ZIF-8表面功能化显著提升了滤材对有害气体的吸 附性能,SO2吸附量提升约93%,甲苯吸附量提升约111.5%,表 现出协同捕获颗粒物与有害气体的能力。玄武岩纤维赋予滤 材优异的耐热性,在250°C下可维持稳定的过滤性能。

此外,负载的 ZIF-8 能够释放 Zn2+离子,使滤材具有厂 谱抗菌能力,对大肠杆菌、金黄色葡萄球菌和肺炎链球菌等抗 菌率均超过99.8%,还展现出良好的抗真菌效果。由于复合 滤材的制备基于天然生物质及矿物纤维,并采用无黏合剂工 艺,因此其具有良好的降解特性,土壤掩埋21天后,滤材质量 损失率达32.2%。

该研究为复杂环境下空气过滤提供了高效、多功能及可 持续解决方案。

北京研发 青海转化

新模式力推科创与产业"双向奔赴"

本报讯 (记者邢生祥)记者日前从青海省科技厅获悉 青海(北京)科技创新基地立足青海高质量发展科技创新需 求,汇聚北京市优秀科技人才、建设创新平台、开展技术研发。 孵化创新企业、促进科技成果到青海转化应用,打造"北京研 发、青海转化"的研发新模式,推动科技创新资源和产业资源

2024年8月,青海省科技厅与北京市丰台区政府签署《共 建青海(北京)科技创新基地合作备忘录》,在丰台园创新中心 共建青海(北京)科技创新基地。目前,该基地已建设完成 3000平方米特色龙头企业研发中心、1000平方米科技型初创 企业孵化空间,西部矿业、盐湖沃锦等10家青海重点企业,以 及北京仟跃科技、北京执象科技等3家北京高科技企业相继 签约入驻,覆盖盐湖资源综合利用、新能源、新材料、绿色算 力、智能制造等京青两地协同发展的优势产业。

为加大科创基地的政策保障,入驻企业可享受北京市丰 台区中关村自主创新示范区政策与青海省科技计划、成果转 化、人才引进等专项支持,并可自主选择在北京或青海注册, 科创基地提供租金减免及高端人才政策保障等服务。今后, 青海将持续强化青海(北京)科技创新基地建设,聚焦新材料、 人工智能、先进制造等前沿领域,探索科研成果转化实践场景 和应用渠道,拓展"科技+产业+金融"合作交流路径,加速科 技成果从实验室走向市场,建立东西部科技成果产业化协同 研发转化新模式。

"不用悬在半空担惊受怕了"

为高压禁区装上"安全之手"

本报讯 (记者张翀 通讯员刘超 实习生张心怡)刚刚过 去的这个夏天,高温把220千伏马家塝变电站的水泥地烤得 发烫,对于供电系统来说,清洗绝缘子却变成一项简单的工 作,只需要带电作业机器人举起干冰喷枪,不到20分钟就能 完成这项任务。这台"钢铁助手",是29岁的国网湖北省电力 有限公司电力科学研究院科研员简旭用多年失败与坚守换来 的"安全之手"

2021年8月,刚入职国网湖北电科院的简旭,挑起重担一 研发220千伏变电绝缘子带电干冰清洗机器人。这台机器人 不仅要防触电,还得解决"停电清洗"的老难题——以前清洗 220千伏绝缘子,得停掉片区供电,炎炎夏日里,不少老人孩 子只能在闷热中等待供电恢复,供电员工常常因停电作业遭 到抱怨。

简旭反复测试,最终用铜箔、金属布、铝网的多层复合结 构,挡住了强电磁场。当这台机器人在马家塝变电站成功完成 带电清洗工作时,同事凑到跟前摸了摸机械臂:"这'铠甲'真顶 用!以后咱们既不用停电,也不用悬在半空担惊受怕了。"

如今,简旭研制的机器人已突破10千伏至220千伏电压 等级壁垒,独创干冰清洗、螺栓锁卸等7类带电精细作业功 能,累计替代人工带电作业800余次,减少停电损失超2000万 元,还拿下3项全国技术创新一等奖、9项发明专利。2024年 末在"鄂有绝活"技能大赛上,捧着先进制造类赛项一等奖奖 杯的他,心里想的还是变电站里的供电员工:"上次去宜昌变 电站,张师傅说希望巡视机器人能更轻便,以后他们不用爬杆 塔高空作业。这就是我们下一步的目标。"

人形机器人足球赛开赛

机器人在足球比赛中(9月8日摄)。 9月6日至9日,2025亚太机器人世界 杯青岛国际邀请赛在青岛世界博览城国际 展览中心举行。其中,人形机器人足球赛 吸引了众多观众前来观赛。

新华社记者 李紫恒 摄

通过技术融合与模式创新,北斗系统加速在低空经济领域的创新应用-

北斗赋能低空经济规模化发展

本报记者 李丰

近日,第六届位置服务科技论坛暨北斗 低空经济产业规模化交流会议在贵阳国际 生态会议中心举行。本次会议作为2025中 国国际大数据产业博览会的重要组成部分, 以"北斗与低空经济产业规模化"为主题,汇 聚了来自科研院所、高校、企业及政府部门 的权威专家,围绕北斗技术赋能低空经济发 展、通导遥一体化应用、低空安全管理、产业 生态构建等关键议题展开深度探讨。

本次会议中,来自国内众的多专家表 示,我国应加速推进北斗系统在低空经济领 域的创新应用,通过技术融合与模式创新, 积极开拓万亿元级新市场,培育经济发展新 动能。

提供关键技术支撑

"北斗与5G的深度融合将彻底解决室内 外无缝定位难题,我们的技术创新已实现通 过通信基站达成厘米级定位,成本仅为传统 方案的十分之一。这将为低空经济发展提

供至关重要的时空底座。"国际欧亚科学院 院士邓中亮教授介绍说,这一技术突破意味 着未来在城市楼宇密集区域和室内空间,无 人机等低空飞行器也能获得连续可靠的高 精度定位服务,为低空物流、应急救援等应 用场景扫清了技术障碍。

作为国内领先的地理信息技术研发机 构,莫干山地信实验室在遥感解译、三维建 模等领域取得多项突破性成果。莫干山地 信实验室执行主任张继贤研究员展示了该 实验室研发的"莫干·玄衍"地理空间大模 型,他介绍:"我们的生成式三维建模技术仅 需传统1/10的数据量,就能实现10倍以上的 建模效率提升,为低空经济提供高精度的实 景三维底座。"

据介绍,该模型已实现低空航路智能规 划、三维导航地图构建、飞行安全管控等核 心功能,为低空空域数字化管理提供了关键 技术支撑。

支撑低空经济规模化发展

中国电科首席科学家蔚保国研究员认 为,国内科研机构应当加大与企业合作力

度,构建虚实共生的低空时空网,通过数字 孪生技术实现物理空间与数字空间的深度 映射,为低空经济提供全空域、全时域的高 精度时空服务。而这一体系将整合天基、空 基、地基时空资源,形成天空地一体化的信 息服务能力,支撑低空经济规模化发展。

欧洲科学院院士金双根教授重点分享 了通导遥一体化技术在低空经济中的应用 前景。他认为,通过北斗+无人机平台,我国 已在农业监测、地质灾害预警等领域取得显 著成效,未来还将拓展至智慧物流、城市管 理等更多场景,为低空经济发展提供全方位 技术支撑。通导遥一体化技术能够实现厘 米级精度的实时感知与数据处理,大幅提升 低空飞行的安全性与运营效率。

他举例说明,在长江流域的水文监测 中,该技术已将水位监测精度提升至厘米 级,时间分辨率缩短至5分钟,为低空经济的 高精度应用奠定了坚实技术基础。

目前,全国5961个北斗基准站已向低空 企业开放,提供厘米级定位服务;农业农村 部"北斗+智慧农业"试点成效显著,最高增 产达19%;10项低空经济强制性国家标准正 在制定,涵盖无人机适航、空管服务等关键

领域。各方将共同建立低空经济统计监测 体系,完善空域数据确权、流转与收益分配 机制。

应用场景从单点示范向全域拓展

会议揭示了低空经济发展的三大趋势, 通导遥一体化技术架构正成为产业底层支 撑,北斗与5G/6G的深度融合将破解城市复 杂环境下的高精度定位难题;低空基础设施 标准化建设加速,实景三维中国、全国北斗 基准站"一张网"等国家新型基础设施向低 空领域开放;应用场景从单点示范向全域拓 展,物流配送、农业植保、应急救援等刚需场 景率先实现商业化闭环。

采访中,与会专家认为,2026年将成为 我国低空经济规模化应用元年,预计在低空 物流、城市交通、旅游观光等领域涌现首批 成熟商业模式。随着北斗时空底座、通导遥 一体化、低空专用网络等基础设施完善,中 国低空经济有望复制新能源汽车产业的换 道超车路径,打造万亿元级新增长极。而贵 州凭借地理环境优势和大数据产业基础,有 望成为低空经济区域示范标杆。